A
ugustin Louis Cauchy (Cô-si) là nhà toán học người Pháp sinh ngày 21 tháng 8 năm 1789 tại Paris, mất ngày 23 tháng 5 năm 1857 cũng tại Paris. Ông vào học trường Bách khoa Paris năm 16 tuổi. Năm 1813, ông từ bỏ nghề kỹ sư để chuyên lo về toán học. Ông dạy toán ở trường Bách khoa và là thành viên viện Hàn lâm Khoa học Pháp.
Ông nhận bằng kỹ sư và rời Paris tới Cherbourg năm 1810. Năm 1813 Lagrange và Laplace đã thuyết phục Cauchy từ bỏ kỹ thuật để cống hiến cho toán học. Ông tới Freiburg Thụy Sĩ một thời gian ngắn sau đó năm 1831 làm việc tại Đại học Turin. Năm 1848, ông đăng bài nghiên cứu của mình ở đại học Bách khoa.
Công trình lớn nhất của ông là lý thuyết hàm số với ẩn số phức tạp. Ông cũng đóng góp rất nhiều trong lĩnh vực toán tích phân và toán vi phân. Ông đã đặt ra những tiêu chuẩn Cauchy để nghiên cứu về sự hội tụ của các dãy trong toán học. Trong đại số, ông đã viết những công trình mở đường về định thức và lý thuyết nhóm.
Ngoài công trình có sức ảnh hưởng của ông trong mỗi phân ngành toán học, ông còn đóng góp cho thiên văn học, quang học, thủy động học và những lĩnh vực khác với gần 800 ấn phẩm có các công trình về lý thuyết sóng, sự đàn hồi, giải tích vi phân... Ông là tác giả cuốn “Giáo trình giải tích toán học” (1821). Ông đã đưa ra khái niệm bất đẳng thức sau được gọi là bất đẳng thức Cauchy.
Bất đẳng thức Cauchy là bất đẳng so sánh giữa trung bình cộng và trung bình nhân của n số thực không âm và được phát biểu như sau:
Trung bình cộng của n số thực không âm luôn lớn hơn hoặc bằng trung bình nhân của chúng, trung bình cộng chỉ bằng trung bình nhân khi và chỉ khi n số đó bằng nhau.
• Với 2 số:
Đẳng thức xảy ra khi và chỉ khi a = b
• Với n số:
Đẳng thức xảy ra khi và chỉ khi.
Cauchy là một nhà toán học sâu sắc, phương pháp nghiên cứu của ông rõ ràng và nghiêm ngặt, có ảnh hưởng rất lớn đối với người đương thời và người kế nhiệm ông. Tác phẩm của ông bao gồm toàn bộ phạm vi của toán học và vật lý toán học. Thiên tài của Cauchy được thể hiện trong giải pháp đơn giản của ông về vấn đề Apollonius mà ông phát hiện ra năm 1805. Năm 1816, ông đã có những đóng góp lớn đối với toán học trong các phương pháp mà ông giới thiệu. Đó là lý thuyết số và số lượng phức tạp, lý thuyết nhóm và thay thế, lý thuyết về chức năng, phương trình vi phân.